M1.(a) $\quad 6.5 \times 10^{10} \mathrm{~Pa} \checkmark$
(b) $\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{2}$
(c) Direction of movement of particles in transverse wave perpendicular to energy propagation direction \checkmark

Parallel for longitudinal \checkmark
(d) $\rho_{1} \mathrm{C}_{1}=\rho_{2} \mathrm{C}_{2} \checkmark$
$E=\rho c^{2}$ or $\rho c=\frac{E}{c}$ seen
(e) $\frac{\rho_{x}}{\left[\rho_{y}\right.}=\frac{c_{y}}{c_{x}}$ and $\left.c_{x}=2 c_{y}\right]$
$0.5 \checkmark$
(f) speed of the wave in seawater is less than speed of the wave in glass \checkmark

M2.B

M3.C

M4.(a) number of (complete) waves (passing a point) in 1 second OR number of waves / time (for the waves to pass a point) OR
(complete number of) oscillations \backslash vibrations per second OR
1 / T with T defined as time for 1 (complete) oscillation \checkmark
Allow: cycles
Allow: unit time
(b) For two marks:
oscillation of particles \backslash medium \backslash material etc, but not oscillation of wave is parallel to \backslash in same direction as
the direction wave (travels) $\checkmark \checkmark$
For one mark:
particles \material \medium move(s) \disturbance \displacement
parallel to \backslash in same direction as
the direction wave travels
OR
(oscillations) parallel to direction of wave travel
the one mark answer with:
mention of compressions and rarefactions OR
(longitudinal waves) cannot be polarised
Page 3
gets two marks
\checkmark
Allow
Vibration
Allow direction of energy transfer \ wave propagation
(c) $\quad\left(f=1540 / 0.50 \times 10^{-3}\right)$
$=3100000(\mathrm{~Hz}) \checkmark(3080000)$
2sf \downarrow
(d) no more than two points from either list (max 3):

Description

- mention of nodes and antinodes
- particles not moving at a node
- maximum displacement at antinode
- particles either side of node in antiphase / between two nodes in phase
- variation of amplitude between nodes

Explanation

- a stationary wave (forms)
- two waves are of equal frequency or wavelength (and amplitude in the same
medium)
- reflected and transmitted waves \waves travelling in opposite directions, pass through each other
- superpose / interference occurs
- constructive interference at antinodes
- destructive interference at nodes

Allow 'standing wave'

M5.(a) (i) $\quad \pi / 2$ (radians) or 90 (degrees)
No path differences
Penalise contradictions
No fractions of a cycle
(ii) $3 \pi / 2$ (rad) or 270 (degrees)

No path differences
Penalise contradictions
No fractions of a cycle
(b) (oscillation or motion) perpendicular to direction of wave (travel / velocity / energy transfer)
(oscillates from equilibrium to maximum positive displacement, back to equilibrium, then to max negative displacement) and back to equilibrium / starting position / rest position
do not allow 'up and down' for first mark
allow 'up and down', or 'down then up', 'side to side', 'rise and fall' in place of oscillates
Allow 'rest position', 'starting position', \square middle', 'centre line' ref to nodes / antinodes not allowed for $2^{\text {nd }}$ mark
(c) (the wave is) transverse OR not longitudinal \checkmark
accept it is an S wave or secondary wave
only transverse can be polarised OR longitudinal waves cannot be polarised OR oscillations are in one plane
(d) (i) number of waves / complete cycles / wavelengths (passing a point / produced) per second
or 'unit time'
allow: (number of) oscillations / vibrations / cycles per second
allow $f=1$ / T only if T is correctly defined do not allow references to $f=c / \lambda$
(ii) $\quad(v=f / \lambda \lambda=v / f=) 4.5 \times 10^{3} / 6.0 \checkmark$ $=750(\mathrm{~m}) \checkmark$
correct answer only gets 2 marks

M6. (a) (wave) B \checkmark
(the parts of the) spring oscillate / move back and forth in direction of / parallel to wave travel
OR
mention of compressions and rarefactions \checkmark
Second mark can only be scored if first mark is scored
(b) (i) (double ended arrow / line / brackets) from between two points in phase \checkmark 1
(ii) wave A: arrow vertically upwards wave B : arrow horizontally to the left 2
(c) (transmitted radio waves are often) polarised
aerial (rods) must be aligned in the same plane (of polarisation / electric field) of the wave

M7. (a) maximum displacement from equilibrium/mean position/mid-point/etc (1)
(b) (i) any one from:
surface of water/water waves/in ripple tank (1)
rope (1)
slinky clearly qualified as transverse (1)
secondary ('s') waves (1)
(ii) transverse wave: oscillation (of medium) is perpendicular to wave travel

Page 6

or transverse can be polarised
or all longitudinal require a medium (1)
(c) (i) vertical line on $\mathrm{B} \pm 5^{\circ}$ (1)
(ii)

$\max 0,180,360+\min 90,270(1)$
and line reaches same minimum and maximum every time and reasonable shape (1)
(d) appropriate use (1)
reason for Polaroid filter being used (1)
eg
Polaroid glasses/sunglasses/
camera
(in a) microscope
polarimeter to analyse chemicals/concentration
stress analysis
or type of sugar
to reduce glare windscreens reduce glare/enhance image to identify minerals/rocks reveals areas of high/low stress/ other relevant detail

LCD displays	very low power/other relevant detail
3D glasses	enhance viewing experience, etc

very low power/other relevant detail
enhance viewing experience, etc

M8. transverse yes

M9.A

M10.B

M11.CM12.A
M13. (a) (i) particle vibration (or disturbance or oscillation) (1) same as (or parallel to) direction of propagation (or energy transfer) (1)
(ii) (particle vibration)
perpendicular to direction of propagation (or energy transfer) (1)
(b) variation in intensity between max and min (or light and dark) (1) two maxima (or two minima) in 360° rotation (1)

